Побаяню и я
, влом искать свой топик.
Но на сайте тоётоводов как-то всё неуверенно, да и ссылки на За рулём
Но и в этой статейке есть противоречия.
Ссори за "многа букв"
Автомобильные охлаждающие жидкости в настоящее время условно делят на три группы в зависимости от состава присадок, обеспечивающих антикоррозионную защиту деталей системы охлаждения:
1. Нитритные (в качестве ингибитора коррозии черных металлов содержат токсичные соединения - нитрит натрия, тринатрийфосфат и т.п.).
2. Силикатные (безнитритные).
3. 3. Карбоксилатные (безсиликатные).
Конкретный химический состав каждой из этих групп разрабатывается с учетом конструкционных материалов, используемых в двигателе, и его форсированности. Срок работоспособности антикоррозионных присадок в этих группах (определяющий пригодность охлаждающей жидкости в целом) составляет: для нитритной группы - 2 года (или примерно 60 тыс. км пробега), для силикатной группы - 3 года (около 100 тыс. км пробега), для карбоксилатной группы - 4-5 лет (около 150 тыс. км пробега). Специальных требований к цвету антифризов различных групп не существует. Охлаждающие жидкости первой группы окрашиваются обычно в синий или голубой цвета, антифризы силикатной группы имеют чаще всего зеленый цвет, а в антифризы карбоксилатной группы добавляются красители красного или фиолетового цветов. Антифризы карбоксилатной группы нельзя смешивать с антифризами других групп, и при замене антифриза необходимо руководствоваться предписаниями автопроизводителей. Классический ТОСОЛ относится к первой группе антифризов (нитритной) и обычно не содержит специальных ингибиторов, предотвращающих высокотемпературную коррозию алюминия, поэтому применять его в двигателях с алюминиевыми блоками цилиндров, алюминиевыми радиаторами, а также в дизельных двигателях с термонагруженной алюминиевой головкой блока не рекомендуется. В настоящее время наиболее широко используются силикатные антифризы, содержащие ингибиторы коррозии на основе силикатов - солей кремниевой кислоты (жидкое стекло). Недостатками таких охлаждающих жидкостей является формирование по всей поверхности системы охлаждения сравнительно толстого (до 0,5 мм) защитного слоя, ухудшающего эффективность теплоотвода, а также образование осадка, закупоривающего узкие каналы системы охлаждения. Кроме того, при разложении силикатов образуется абразивный осадок из окиси кремния (кварцевый песок), вызывающий ускоренный износ подшипников водяной помпы. Третье поколение антифризов - карбоксилатные антифризы были разработаны в 90-х годах прошлого столетия, и содержат ингибиторы коррозии на основе органических кислот. Такие антифризы не образуют толстого защитного слоя по всей поверхности системы, а адсорбируются лишь в местах возникновения коррозии с образованием защитных слоев толщиной не более 0,1 микрона. Эти охлаждающие жидкости наиболее дорогостоящие и применяются, в первую очередь, в двигателях, требующих улучшенного теплоотвода - высокофорсированных двигателях, двигателях с турбонаддувом. Они успешно предотвращают коррозию черных и цветных металлов, а также высокотемпературную коррозию алюминиевых сплавов. Даже качественные охлаждающие жидкости необходимо полностью менять с промывкой системы; в случае их несвоевременной замены такие жидкости становятся опасными для двигателя, в первую очередь, из-за повышения отложений в системе охлаждения и снижения антикоррозионных свойств. При эксплуатации двигателей с применением некачественных или просроченных охлаждающих жидкостей из-за отложений на внутренних поверхностях системы охлаждения нарушается температурный режим работы двигателя. Для бензиновых двигателей при повышении температуры в пристеночной области между цилиндром и поршнем даже на несколько десятков градусов от расчетной начинает проявляться склонность мотора к детонации (особенно при работе на низкосортном топливе). Ненормальное сгорание топливовоздушной смеси наиболее выражено в тяжелых переходных режимах работы бензиновых двигателей (при изменении частоты вращения коленвала под нагрузкой). При выходе температуры поршня из-за ухудшенного теплоотвода за допустимые пределы температурное расширение поршня может приводить к смыканию зазора в сопряжении головка поршня - цилиндр с ускоренным износом цилиндров или с возникновением задира и заклиниванием двигателя. Величина номинального зазора в этом сопряжении в холодном состоянии двигателя равна 0,04 - 0,06 мм, и на каждые 50° превышения температуры поршня над температурой цилиндра зазор уменьшается примерно на 0,01 мм. В работающем под нагрузкой двигателе температура головки nopшня достигает 200 - 250° С, а величина зазора цилиндр - поршень уменьшается до 0,02 - 0,03 мм. В этом режиме при толщине теплоизолирующих отложений между поршнем и теплоотводящей жидкостью около 50 мкм температура поршня превышает расчетные предельные значения (примерно 300° С), что неминуемо ведет к критической ситуации смыкания зазора. Необходимо отметить, что аналогичные эффекты склонности мотора к детонации, а также задиров и заклинивания цилиндро-поршневой группы в равной степени характерны при образовании теплоизолирующего слоя как на внешней (со стороны охлаждающей жидкости), так и на внутренней (со стороны камеры сгорания) теплоотводящей поверхности - нагара и шламов на поршнях и зеркале цилиндров. Наблюдаются подобные эффекты и при добавлении в масла металлокерамических восстанавливающих добавок (минерально-силикатных композиций) - ХАДО, РВС, ФОРСАН и т.п., образующих футеровочные (теплоизолирующие) слои на цилиндрах и, особенно, на верхней части поршней. При ухудшении теплоотвода и повышении рабочей температуры стенки цилиндра уменьшается вязкость и ухудшаются адсорбционные свойства масляной пленки на поверхности цилиндра. А значит, соответственно увеличивается расход масла на угар. Кроме того, расход масла в этой ситуации может резко увеличиться из-за потери работоспособности маслосъемных колец. Температура отпуска термофиксированных расширителей маслосъемных колец обычно составляет около 200°С, и при работе двигателя в режиме высоких нагрузок повышение контактной температуры сверх допустимой даже на несколько десятков градусов (из-за ухудшения теплоотвода) может вывести маслосъемные кольца из строя. Самые опасные и быстрые последствия применения некачественной охлаждающей жидкости возникают при попадании охлаждающей жидкости в камеру сгорания и в масло. Коварной особенностью в первую очередь "классических" вазовских двигателей является ускоренная коррозия резьбовых заглушек рубашки охлаждения головки блока цилиндров (в результате чего охлаждающая жидкость начинает просачиваться в клапанный механизм, попадает в камеру сгорания и стекает в картер, образуя водомасляную эмульсию). Определить, что появление такой эмульсии вызвано именно коррозией технологических заглушек, визуально практически невозможно - требуется опрессовка (проверка давлением). Внешними признаками попадания охлаждающей жидкости во внутренний объем двигателя (в камеру сгорания и в картер) являются постоянный белый цвет отработавших газов как на холодном двигателе, так и после его прогрева (при повышенном поступлении в камеру сгорания масла цвет дыма синеватый, а при работе двигателя на переобогащенной смеси и неполном сгорании топлива - черный). В практике эксплуатации автомобилей периодический контроль работающих масел не проводится, поэтому попадание в маслоохлаждающей жидкости из-за неисправности системы охлаждения может быть одной из причин существенного снижения ресурса двигателей. Детали двигателей, работающих на маслах, содержащих охлаждающую жидкость, изнашиваются в несколько раз быстрее, чем в двигателях, работающих на нормальном масле."