Система TCCS не является исключением и также выпускается в двух вариантах. Мы начнем с более сложного и передового варианта с обратной связью, тем более, что автомобили, приходящие из Японии, имеют именно этот вариант системы, ведь требования к чистоте выхлопа в Японии очень высоки.
Компьютер (ECU)
Начнем мы, пожалуй, с компьютера управления, который общепринято называть ECU (Electronic Control Unit). В памяти компьютера находятся собственно программа управления и набор так называемых "карт" (maps), в которых отражена необходимая для работы программы информация. При этом сама программа более-менее стандартна для любого двигателя, а вот карты, используемые ею, уникальны для каждой модели и каждой модификации двигателя. Для большей наглядности можно представить себе простейшую программу, которая работает с двумя картами, одна из которых представляет собой трехмерную таблицу, в которой по горизонтали (вдоль оси X) заданы значения массы поступающего воздуха, по вертикали (вдоль оси Y) - значения оборотов двигателя, а вдоль оси Z - значения углов открытия дроссельной заслонки. На пересечении всех трех колонок и столбцов таблицы проставлены значения количества топлива, которое необходимо впрыснуть при данных условиях работы двигателя. Во второй карте, двумерной, заданы соответствия между количеством топлива и временем открытия форсунок, в результате из этой карты программа может узнать то, для чего и городился весь этот огород - длительность электрического импульса, который должен быть подан на форсунки. В процессе работы программа каждые несколько миллисекунд опрашивает датчики, сравнивает полученные значения с заданными в первой карте, выбирает из соответствующей ячейки содержащееся там значение количества топлива, потом переходит ко второй карте и выбирает исходя из этого значения требуемое время открытия форсунок. Далее следует импульс на форсунки - все, цикл завершен. Описанный процесс отличается от реального тем, что на самом деле таких карт больше и в них отражены взаимные зависимости гораздо большего числа параметров, чем было перечислено, в том числе нагрузка на двигатель, температура двигателя, температура воздуха и даже высота над уровнем моря. Но цель работы программы управления та же - конечным результатом сбора и обработки данных от датчиков должна быть длительность электрического импульса на форсунку.
Таким образом, вся сложность заключается не в написании собственно программы, которая всего-то и делает, что сверяется последовательно с несколькими картами и в результате "добирается" до некоторого значения, а в самих картах, которые должны быть очень точными и подобраны под конкретную модификацию двигателя.
Кроме этого, ECU системы TCCS управляет также и углом опережения зажигания, зависимость которого от различных текущих параметров работы двигателя также задается соответствующими картами.
Обратная связь
Обратная связь в системе TCCS, как и в любой другой системе впрыска, обеспечивается лямбда-зондом (датчиком кислорода). Необходимость ее обусловлена тем, что как бы ни были хороши и точны карты, находящиеся в памяти ECU, каждый экземпляр двигателя все равно в той или иной мере отличается от остальных и требует индивидуальной подстройки топливной системы. В процессе эксплуатации двигателя также происходят изменения, связанные с его старением и износом, и которые тоже было бы неплохо компенсировать. Кроме этого, сами карты могут быть изначально составлены неоптимально для некоторых сочетаний внешних условий и режимов работы двигателя и, таким образом, требовать корректировки. Именно эти задачи и позволяет решить наличие обратной связи. Но главная цель при решении всех этих задач - это достижение наиболее полного сгорания горючей смеси в цилиндрах двигателя для получения наилучших характеристик его токсичности. Известно, что оптимальным для полного сгорания топлива является соотношение воздух/топливо равное 14.7:1. Это отношение называют "стехиометрическим" или, иначе, "коэффициент лямбда" (именно отсюда и пошло название "лямбда- зонд").
Выглядит обратная связь так. После того, как компьютер определил необходимое количество топлива, которое нужно впрыснуть в текущий момент работы двигателя исходя из текущих условий и режима его работы, топливо сгорает и выхлопные газы поступают в выпускную систему. В этот момент с датчика кислорода считывается информация о содержании кислорода в выхлопных газах, на основании чего можно сделать вывод, а так ли все прошло, как было расчитано, и не требуется ли коррекция состава горючей смеси. Образно говоря, компьютер постоянно проверяет свои расчеты по конечному результату, информацию о котором он получает от датчика кислорода, и, если это требуется, выполняет окончательную точную подстройку состава горючей смеси. В англоязычной литературе эта процедура обычно именуется "short term fuel trim". Но так происходит не всегда - в некоторых режимах работы двигателя компьютер игнорирует информацию от датчика кислорода и руководствуется только своими собственными расчетами. Давайте посмотрим, когда же это происходит.
Режимы управления
Компьютер любой системы управления впрыском с обратной связью, в том числе и TCCS, в процессе работы может находиться в одном из двух режимов управления - либо в режиме замкнутого контура (closed loop), когда он использует информацию датчика кислорода в целях точной корректировки, либо в режиме разомкнутого контура (open loop), когда он игнорирует эту информацию. Ниже мы рассмотрим основные режимы работы двигателя и режимы управления.
1. Запуск двигателя. В момент запуска требуется, в зависимости от температуры как самого двигателя, так и окружающего воздуха, обогащенная горючая смесь с повышенным процентным содержанием топлива. Это всем известный факт, характерный вообще для всех бензиновых двигателей внутреннего сгорания, как карбюраторных, так и двигателей с впрыском, поэтому мы не станем подробно останавливаться на причинах. Скажем только, что соотношение воздух/топливо в этом режиме варьируется в среднем от 2:1 до 12:1. В этом режиме компьютер системы TCCS работает в режиме разомкнутого контура.
2. Прогрев двигателя до рабочей температуры. После запуска двигателя компьютер системы TCCS постоянно проверяет текущую температуру двигателя и в зависимости от этого параметра производит расчет состава горючей смеси, а также устанавливает требуемую величину прогревных оборотов посредством воздушного клапана ISC (Idle Speed Control). В процессе прогрева двигателя с ростом температуры соотношение воздух/топливо изменяется компьютером в сторону обеднения, а прогревные обороты также уменьшаются. В это же время происходит разогрев датчика кислорода в выпускном коллекторе до рабочей температуры. Компьютер при этом работает в режиме разомкнутого контура.
3. Холостой ход. По достижении заданной температуры двигателя и при условии достаточного для работы разогрева датчика кислорода (датчик кислорода начинает выдавать правильные показания только при температуре от 300C и выше) компьютер переключается в режим замкнутого контура и начинает использовать показания датчика кислорода для поддержания стехиометрического состава горючей смеси (14.7:1), обеспечивающего наименьший уровень содержания токсичных веществ в выхлопных газах.
4. Движение с постоянной скоростью, плавное увеличение или уменьшение скорости. В этом случае компьютер TCCS также находится в режиме замкнутого контура и использует показания датчика кислорода. Вы можете раскрутить двигатель хоть до 6500 об/мин, наполовину нажав педаль газа, но компьютер все - равно будет оставаться в режиме замкнутого контура, обеспечивая состав горючей смеси в пределах примерно от 14.5:1 до 15.9:1.
5. Резкое ускорение. Как только Вы нажимаете педаль газа "в пол" и полностью открываете дроссельную заслонку - компьютер безоговорочно переходит в режим разомкнутого контура. Под нагрузкой (а компьютер всегда в состоянии определить, велика ли нагрузка на двигатель) компьютер может переключиться в режим разомкнутого контура несколько раньше - уже при открытии дроссельной заслонки на 68 или более процентов от ее хода. При этом он будет поддерживать состав горючей смеси в пределах от 11.9:1 до 12:1 для получения большей мощности.
6. Принудительный холостой ход (торможение двигателем). Компьютер также переходит в режим разомкнутого контура в случаях, когда текущие обороты двигателя превышают величину оборотов холостого хода, а дроссельная заслонка полностью закрыта - например, когда Вы движетесь под уклон, убрав ногу с педали газа и не выключив передачу. При этом компьютер обеспечивает обедненный состав горючей смеси.
Таким образом, мы видим, что большую часть времени компьютер TCCS находится в режиме замкнутого контура, который обеспечивает оптимальный состав горючей смеси. Более того, находясь в этом режиме, компьютер "самообучается", корректируя и модифицируя карты, используемые в режиме разомкнутого контура, адаптируя их к текущим условиям эксплуатации и состоянию двигателя. Т.е., если, скажем, компьютер замечает, что в режиме замкнутого контура для достижения оптимального сгорания ему приходится все время обогащать топливо - воздушную смесь на, скажем, 5% относительно базовых значений, прописанных в соответствующих картах, то через некоторое время, когда он удостоверится в стабильности этого корректирующего коэффициента, он соответствующим образом модифицирует сами карты, тем самым влияя и на смесеобразование в режиме разомкнутого контура. Это и есть тот самый процесс "самообучения", о котором тоже ходит столько слухов. "по-научному"
он называется "long term fuel trim". Следует заметить, что модифицированные карты сохраняются только в энергозависимой памяти компьютера, поэтому после отключения аккумулятора восстанавливаются заводские значения этих карт, и компьютер должен "самообучаться" заново.
Все было бы просто замечательно, если бы не один фактор, портящий эту красивую картину - лямбда-зонд имеет обыкновение выходить из строя в результате заправок этилированным бензином. В реальной жизни это приводит к тому, что рано или поздно после пробега по нашим дорогам система TCCS лишается своей способности к адаптации под текущие условия и работает строго по тем картам, которые изначально находились в памяти компьютера, постоянно находясь в режиме разомкнутого контура. Естественно, что ничего хорошего из этого не получается, ведь большинство автомобилей к тому времени, когда они попадают к нам, уже немало побегали по японским дорогам, и двигатели их, увы, уже не новые. Впрочем, практика показывает, что и ничего особенно плохого тоже не происходит. Более того, система TCCS "нативных" японских Тойот в случае выхода из строя лямбда-зонда даже не зажигает на панели лампочку "check engine" в отличие от Тойот для американского и/или европейского рынков.
Кстати, следует заметить, что каталитический нейтрализатор (именуемый в народе "катализатор") и лямбда-зонд - это совершенно разные устройства, хотя их и можно назвать "сладкой парочкой" - как правило, если в машине есть лямбда-зонд - то есть и нейтрализатор, и наоборот. Оба эти устройства служат одной и той же цели - снижению уровня токсичности выхлопа, но выполняют каждое свою часть работы: лямбда-зонд помогает системе управления впрыском готовить оптимальную с точки зрения полноты сгорания горючую смесь, а нейтрализатор эту смесь дожигает.
Каталитический нейтрализатор
Нейтрализатор, который представляет собой керамические "соты", покрытые активным слоем, способным дожигать остающиеся в выхлопных газах частички топлива, также выходит из строя после нескольких заправок этилированным бензином. Выходит из строя - это означает, что он теряет способность к дожиганию несгоревших частичек топлива. Известны случаи, когда соты катализатора оплавлялись, забивались нагаром и такой нейтрализатор уже создавал серьезную помеху на пути выходящих из двигателя выхлопных газов. Но следует сказать, что сама по себе заправка, даже неоднократная, этилированным бензином к такому результату не приведет. Причина оплавления нейтрализатора - это работа двигателя в течение длительного времени на обогащенной (или богатой) смеси, к чему может привести как выход из строя лямбда-зонда, так и неисправности в системе питания и зажигания.
Принцип работы датчика кислорода
Наиболее распространенный тип - циркониевый кислородный датчик. По сути дела он является переключателем, резко меняющим свое состояние на рубеже 0.5% кислорода в составе выхлопных газов. Это количество кислорода соответствует идеальному стехиометрическому соотношению воздух/топливо 14.7:1.
Обычно интерфейс датчика устроен таким образом: прогретый датчик (более 300 градусов Цельсия) при количестве кислорода менее 0.5% (богатая смесь), являясь слабым источником тока, выставляет на сигнальном выходе напряжение в диапазоне от 0.45 до 0.8 вольта, а при количестве кислорода более 0.5% (бедная смесь) - от 0.2 до 0.45 вольта. Какой точно уровень напряжения при этом - роли не играет, учитывается его положение относительно средней линии. Если ECU видит сигнал бедной смеси - топливо добавляется. Если в следующий измерительный период ECU видит сигнал богатой смеси - то подача топлива уменьшается. Таким образом состояние системы постоянно колеблется вокруг оптимальной величины и подача топлива настраивается по практическим результатам сгорания. Это позволяет системе адаптироваться к различным условиям работы. Частота колебаний напряжения на датчике кислорода составляет примерно 1-2 Гц на холостых оборотах и 10-15 Гц при 2000- 3000 об/мин.
Так как датчик работает надежно только в хорошо прогретом состоянии, то ECU системы TCCS начинает замечать его показания только после определенного уровня прогрева двигателя. Для ускорения прогрева датчика в него зачастую монтируют электрический подогреватель. Бывают датчики с одним проводом (сигнал), бывают с двумя (сигнал, земля сигнала), с тремя (сигнал, 2 провода подогревателя), с четырьмя (сигнал, земля сигнала, 2 провода подогревателя).
Самодиагностика компьютера системы TCCS
Любая современная система впрыска имеет встроенную подсистему самодиагностики, которая позволяет определить различного рода неисправности датчиков, исполнительных механизмов и узлов системы. В результате процедуры самодиагностики компьютер вырабатывает диагностические коды, которые можно тем или иным способом извлечь из памяти компьютера и расшифровать в соответствии с таблицами. Способ извлечения этих кодов у разных производителей - разный. В системе TCCS для этого используется лампочка "Check Engine" на панели приборов, а переключение компьютера в режим вывода диагностических кодов осуществляется путем закорачивания пары контактов на диагностическом разъеме в моторном отсеке автомобиля. Диагностический разъем обычно находится вблизи левой опоры стойки передней подвески и представляет собой черную или серую коробочку с надписью "DIAGNOSIS" на крышке.