Про ДК:
Чувствительный элемент датчика кислорода находится в потоке отработавших газов. При достижении датчиком рабочих температур, превышающих 360 град. С, он начинает генерировать собственную ЭДС, пропорциональную содержанию кислорода в отработанных газах. На практике, сигнал ДК (при замкнутой петле обратной связи) представляет собой быстро изменяющееся напряжение, колеблющееся между 50 и 900 милливольт. Изменение напряжения вызвано тем, что система управления постоянно изменяет состав смеси вблизи точки стехиометрии, сам ДК не способен генерировать какое-либо переменное напряжение.
Выходное напряжение зависит от концентрации кислорода в отработавших газах в сопоставлении с опорными данными о содержании кислорода в атмосфере, поступающими с элемента конструкции датчика, служащего для определения концентрации атмосферного кислорода. Этот элемент представляет собой полость, соединяющуюся с атмосферой через небольшое отверстие в металлическом наружном кожухе датчика. Когда датчик находится в холодном состоянии, он не способен генерировать собственную ЭДС, и напряжение на выходе ДК равно опорному (или близко к нему).
Для ускорения прогрева датчика до рабочей температуры он снабжен электрическим нагревательным элементом. Различают датчики с постоянным и импульсным питанием нагревательного элемента, в последнем случае, подогревом ДК управляет ЭБУ. Электронный блок управления постоянно подаёт на цепь датчика стабильное опорное напряжение 450 милливольт. Непрогретый датчик имеет высокое внутреннее сопротивление и не генерирует собственную ЭДС, поэтому, ЭБУ "видит" только указанное стабильное опорное напряжение. По мере прогрева датчика при работающем двигателе его внутреннее сопротивление уменьшается, и он начинает генерировать собственное напряжение, которое перекрывает выдаваемое ЭБУ стабильное опорное напряжение. Когда ЭБУ "видит" изменяющееся напряжение, ему становится известным, что датчик прогрелся, и его сигнал готов для применения в целях регулирования состава смеси.
и про кат.
Катализатор - это кусок выхлопной системы, в который встроены множество трубок в виде сот, сквозь которые проходят газы. Соты нужны для того, чтобы увеличить площадь контакта выхлопных газов с поверхностью, на которую нанесен тонкий слой платино - иридиевого сплава. Hедогоревшие остатки (СО, HС, NO), касаясь поверхности каталитического слоя, окисляются до конца кислородом, присутствующим также в выхлопных газах. В результате реакции выделяется тепло, разогревающее катализатор, тем самым активизируется реакция окисления.
Кроме тепла в катализаторе образуется дополнительный объём газа во-первых потому, что догорели углеводороды (также, как в цилиндре двигателя), во-вторых потому, что температура газов выросла. Это и есть то противодавление, которое дает исправный катализатор. Однако величина его не столь велика. Hемалую долю в общую величину противодавления вносят лабиринты резонатора и глушителя. Для того, чтобы снизить сопротивление потоку газов со стороны катализатора, площадь всех отверстий сот примерно в полтора раза больше, чем подводящих или отводящих труб.
Катализатор должен быть прозрачным для ударной волны. Именно поэтому он выполнен в виде сот с очень тонкими перемычками. Когда мы смотрим сквозь него, он "прозрачный", для ударной волны он - просто труба.
Есть ещё один момент, влияющий на работоспособность выпускной системы. Катализатор работоспособен, когда хорошо прогрет. Поэтому его устанавливают настолько близко к двигателю, насколько возможно. Из-за этого сильно сокращается длина "штанов", что отрицательно влияет на резонанс в выпускной системе. Иногда, понимая, что из-за конструктивных особенностей, связанных с наличием катализатора, резонансу всё равно конец, конструкторы просто сводят сразу за коллектором все четыре трубы в одну. ЭТОТ ФАКТОР, В ОСHОВHОМ, И ЯВЛЯЕТСЯ ПРИЧИHОЙ, ПОЧЕМУ АВТОМОБИЛИ, ОСHАЩЕHHЫЕ КАТАЛИЗАТОРОМ, ИМЕЮТ МЕHЬШУЮ МОЩHОСТЬ.
Противодавление здесь не причем.
Надеюсь теперь всем все понятно.